Cart (Loading....) | Create Account
Close category search window
 

Deinterleaving Finite Memory Processes Via Penalized Maximum Likelihood

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seroussi, G. ; Hewlett-Packard Labs., Palo Alto, CA, USA ; Szpankowski, W. ; Weinberger, M.J.

We study the problem of deinterleaving a set of finite-memory (Markov) processes over disjoint finite alphabets, which have been randomly interleaved by a finite-memory switch. The deinterleaver has access to a sample of the resulting interleaved process, but no knowledge of the number or structure of the component Markov processes, or of the switch. We study conditions for uniqueness of the interleaved representation of a process, showing that certain switch configurations, as well as memoryless component processes, can cause ambiguities in the representation. We show that a deinterleaving scheme based on minimizing a penalized maximum-likelihood cost function is strongly consistent, in the sense of reconstructing, almost surely as the observed sequence length tends to infinity, a set of component and switch Markov processes compatible with the original interleaved process. Furthermore, under certain conditions on the structure of the switch (including the special case of a memoryless switch), we show that the scheme recovers all possible interleaved representations of the original process. Experimental results are presented demonstrating that the proposed scheme performs well in practice, even for relatively short input samples.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.