By Topic

Phase-Change Random Access Memory With Multilevel Resistances Implemented Using a Dual Phase-Change Material Stack

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ashvini Gyanathan ; Department of Electrical and Computer Engineering, National University of Singapore , Singapore ; Yee-Chia Yeo

This paper investigates the multilevel behavior of phase-change random access memory devices with a dual phase-change material (PCM) stack, i.e., two PCMs stacked on one another. The dual PCM stack comprises of a Ge2Sb2Te5 (GST) layer and a top PCM layer sandwiching a SiN barrier layer. The top PCM layer was varied in three different splits: Ag0.5In0.5Sb3Te6 (AIST), Ge1Sb4Te7 (GST147), and nitrogen-doped GST (NGST). Extensive electrical characterization and statistical analysis were performed. The intrinsic properties of AIST, GST147, and NGST were used to explain the differences in electrical performances of the three multilevel device splits. The AIST/SiN/GST device split was found to have had the best electrical performance. The difference in electrical resistivities and thermal conductivities played a major role in the power consumption as well as the resistance values of the three multilevel states in these dual PCM multilevel devices.

Published in:

IEEE Transactions on Electron Devices  (Volume:59 ,  Issue: 11 )