By Topic

Capacity achieving linear codes with random binary sparse generating matrices over the Binary Symmetric Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, we prove the existence of capacity achieving linear codes with random binary sparse generating matrices over the Binary Symmetric Channel (BSC). The results on the existence of capacity achieving linear codes in the literature are limited to the random binary codes with equal probability generating matrix elements and sparse parity-check matrices. Moreover, the codes with sparse generating matrices reported in the literature are not proved to be capacity achieving for channels other than Binary Erasure Channel. As opposed to the existing results in the literature, which are based on optimal maximum a posteriori decoders, the proposed approach is based on a different decoder and consequently is suboptimal. We also demonstrate an interesting trade-off between the sparsity of the generating matrix and the error exponent (a constant which determines how exponentially fast the probability of error decays as block length tends to infinity). Based on our results, we also propose a channel coding rate achievable by linear codes at a given block length and error probability. Moreover, we prove the existence of capacity achieving linear codes with a given (arbitrarily low) density of ones on rows of the generating matrix. In addition to proving the existence of capacity achieving sparse codes, an important conclusion of our paper is to prove that any arbitrarily selected sequence of sparse generating matrices is capacity achieving with high probability.

Published in:

Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on

Date of Conference:

1-6 July 2012