Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A fast-CSMA based distributed scheduling algorithm under SINR model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

There has been substantial interest over the last decade in developing low complexity decentralized scheduling algorithms in wireless networks. In this context, the queue-length based Carrier Sense Multiple Access (CSMA) scheduling algorithms have attracted significant attention because of their attractive throughput guarantees. However, the CSMA results rely on the mixing of the underlying Markov chain and their performance under fading channel states is unknown. In this work, we formulate a partially decentralized randomized scheduling algorithm for a two transmitter receiver pair set up and investigate its stability properties. Our work is based on the Fast-CSMA (FCSMA) algorithm first developed in [1] and we extend its results to a signal to interference noise ratio (SINR) based interference model in which one or more transmitters can transmit simultaneously while causing interference to the other. In order to improve the performance of the system, we split the traffic arriving at the transmitter into schedule based queues and combine it with the FCSMA based scheduling algorithm. We theoretically examine the performance of our algorithm in both non-fading and fading environment and characterize the set of arrival rates which can be stabilized by our proposed algorithm.

Published in:

Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on

Date of Conference:

1-6 July 2012