By Topic

Data processing inequalities based on a certain structured class of information measures with application to estimation theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Neri Merhav ; Department of Electrical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

We study data processing inequalities (DPI's) that are derived from a certain class of generalized information measures, where a series of convex functions and multiplicative likelihood ratios are nested alternately. A certain choice of the convex functions leads to an information measure that extends the notion of the Bhattacharyya distance: While the ordinary Bhattacharyya distance is based on the geometric mean of two replicas of the channel's conditional distribution, the more general one allows an arbitrary number of replicas. We apply the DPI induced by this information measure to a detailed study of lower bounds of parameter estimation under additive white Gaussian noise (AWGN) and show that in certain cases, tighter bounds can be obtained by using more than two replicas. While the resulting bound may not compete favorably with the best bounds available for the ordinary AWGN channel, the advantage of the new lower bound, becomes significant in the presence of channel uncertainty, like unknown fading. This is explained by the convexity property of the information measure.

Published in:

Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on

Date of Conference:

1-6 July 2012