By Topic

Neural networks for vector quantization of speech and images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Krishnamurthy, A.K. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Ahalt, S.C. ; Melton, D.E. ; Chen, P.

Using neural networks for vector quantization (VQ) is described. The authors show how a collection of neural units can be used efficiently for VQ encoding, with the units performing the bulk of the computation in parallel, and describe two unsupervised neural network learning algorithms for training the vector quantizer. A powerful feature of the new training algorithms is that the VQ codewords are determined in an adaptive manner, compared to the popular LBG training algorithm, which requires that all the training data be processed in a batch mode. The neural network approach allows for the possibility of training the vector quantizer online, thus adapting to the changing statistics of the input data. The authors compare the neural network VQ algorithms to the LBG algorithm for encoding a large database of speech signals and for encoding images

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:8 ,  Issue: 8 )