By Topic

Electroencephalogram signals classification for sleepstate decision - A riemannian geometry approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li, Y. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Wong, K.M. ; de Bruin, H.

In this work, the authors study the classification of electroencephalogram (EEG) signals for the determination of the state of sleep of a patient. They employ the power spectral density (PSD) matrices as the feature for the distinction between different classes of EEG signals. This not only allows us to examine the power spectrum contents of each signal as well as the correlation between the multi-channel signals, but also complies with what clinical experts use in their visual judgement of EEG signals. To establish a metric facilitating the classification, the authors exploit the specific geometric properties, and develop, with the aid of fibre bundle theory, an appropriate metric in the Riemannian manifold described by the PSD matrices. To use this new metric effectively for the EEG signal classification, the authors further need to find a weighting for the PSD matrices so that the distances of similar features are minimised whereas those for dissimilar features are maximised. A closed form of this weighting matrix is obtained by solving an equivalent convex optimisation problem. The effectiveness of using these new metrics is examined by applying them to a collection of recorded EEG signals for sleep pattern classification based on the k-nearest neighbour decision algorithm with excellent outcome.

Published in:

Signal Processing, IET  (Volume:6 ,  Issue: 4 )