By Topic

A Method to Localize RF {bm B}_{\bf 1} Field in High-Field Magnetic Resonance Imaging Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyoungsuk Yoo ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Gopinath, A. ; Vaughan, J.T.

In high-field magnetic resonance imaging (MRI) systems, B0 fields of 7 and 9.4 T, the RF field shows greater inhomogeneity compared to clinical MRI systems with B0 fields of 1.5 and 3.0 T. In multichannel RF coils, the magnitude and phase of the input to each coil element can be controlled independently to reduce the nonuniformity of the RF field. The convex optimization technique has been used to obtain the optimum excitation parameters with iterative solutions for homogeneity in a selected region of interest. The pseudoinverse method has also been used to find a solution. The simulation results for 9.4- and 7-T MRI systems are discussed in detail for the head model. Variation of the simulation results in a 9.4-T system with the number of RF coil elements for different positions of the regions of interest in a spherical phantom are also discussed. Experimental results were obtained in a phantom in the 9.4-T system and are compared to the simulation results and the specific absorption rate has been evaluated.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 12 )