Cart (Loading....) | Create Account
Close category search window
 

Retinal Vascular Tree Reconstruction With Anatomical Realism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kai-Shun Lin ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Chia-Ling Tsai ; Chih-Hsiangng Tsai ; Sofka, M.
more authors

Motivated by the goals of automatically extracting vessel segments and constructing retinal vascular trees with anatomical realism, this paper presents and analyses an algorithm that combines vessel segmentation and grouping of the extracted vessel segments. The proposed method aims to restore the topology of the vascular trees with anatomical realism for clinical studies and diagnosis of retinal vascular diseases, which manifest abnormalities in either venous and/or arterial vascular systems. Vessel segments are grouped using extended Kalman filter which takes into account continuities in curvature, width, and intensity changes at the bifurcation or crossover point. At a junction, the proposed method applies the minimum-cost matching algorithm to resolve the conflict in grouping due to error in tracing. The system was trained with 20 images from the DRIVE dataset, and tested using the remaining 20 images. The dataset contained a mixture of normal and pathological images. In addition, six pathological fluorescein angiogram sequences were also included in this study. The results were compared against the groundtruth images provided by a physician, achieving average success rates of 88.79% and 90.09%, respectively.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.