By Topic

Avoiding Serialization Effects in Data / Dependency Aware Task Parallel Algorithms for Spatial Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Niethammer, C. ; High Performance Comput. Center, Stuttgart Univ., Stuttgart, Germany ; Glass, C.W. ; Gracia, J.

Spatial decomposition is a popular basis for parallelising code. Cast in the frame of task parallelism, calculations on a spatial domain can be treated as a task. If neighbouring domains interact and share results, access to the specific data needs to be synchronized to avoid race conditions. This is the case for a variety of applications, like most molecular dynamics and many computational fluid dynamics codes. Here we present an unexpected problem which can occur in dependency-driven task parallelization models like StarSs: the tasks accessing a specific spatial domain are treated as interdependent, as dependencies are detected automatically via memory addresses. Thus, the order in which tasks are generated will have a severe impact on the dependency tree. In the worst case, a complete serialization is reached and no two tasks can be calculated in parallel. We present the problem in detail based on an example from molecular dynamics, and introduce a theoretical framework to calculate the degree of serialization. Furthermore, we present strategies to avoid this unnecessary problem. We recommend treating these strategies as best practice when using dependency-driven task parallel programming models like StarSs on such scenarios.

Published in:

Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on

Date of Conference:

10-13 July 2012