By Topic

Using Fermi Architecture Knowledge to Speed up CUDA and OpenCL Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Torres, Y. ; Dipt. Inf., Univ. Valladolid, Valladolid, Spain ; Gonzalez-Escribano, A. ; Llanos, D.R.

The NVIDIA graphics processing units (GPUs) are playing an important role as general purpose programming devices. The implementation of parallel codes to exploit the GPU hardware architecture is a task for experienced programmers. The threadblock size and shape choice is one of the most important user decisions when a parallel problem is coded. The threadblock configuration has a significant impact on the global performance of the program. While in CUDA parallel programming model it is always necessary to specify the threadblock size and shape, the OpenCL standard also offers an automatic mechanism to take this delicate decision. In this paper we present a study of these criteria for Fermi architecture, introducing a general approach for threadblock choice, and showing that there is considerable room for improvement in OpenCL automatic strategy.

Published in:

Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on

Date of Conference:

10-13 July 2012