Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Fair Scheduling and Resource Allocation for Wireless Cellular Network with Shared Relays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yicheng Lin ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Wei Yu

This paper examines the shared relay architecture for the wireless cellular network, where instead of deploying multiple separate relays within each cell sector, a single relay with multiple antennas is placed at the cell edge and is shared by multiple sectors. The advantage of shared relaying is that the joint processing of signals at the relay enables the mitigation of intercell interference. To maximize the benefit of shared relaying, the resource allocation and the scheduling of users among adjacent cell sectors need to be optimized jointly. Based on this motivation, this paper formulates a network utility maximization problem for the shared relay system that considers the practical wireless backhaul constraint of matching the relay-to-user rate demand with the base-station-to-relay rate supply using a set of pricing variables. In addition, zero-forcing beamforming is used at the shared relay to separate users spatially; multiple users are scheduled in the frequency domain to maximize frequency reuse. A heuristic but efficient scheduling and resource allocation algorithm is proposed accordingly. System-level simulations quantify the effectiveness of the proposed approach, and show that the incorporation of the shared relay can improve the overall network performance and in particular significantly increase the throughput of cell edge users as compared to separate relaying.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 8 )