Cart (Loading....) | Create Account
Close category search window
 

Moments Based Framework for Performance Analysis of One-Way/Two-Way CSI-Assisted AF Relaying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minghua Xia ; Div. of Phys. Sci. & Eng., KAUST, Thuwal, Saudi Arabia ; Aissa, S.

When analyzing system performance of conventional one-way relaying or advanced two-way relaying, these two techniques are always dealt with separately and, thus, their performance cannot be compared efficiently. Moreover, for ease of mathematical tractability, channels considered in such studies are generally assumed to be subject to Rayleigh fading or to be Nakagami-m channels with integer fading parameters, which is impractical in typical urban environments. In this paper, we propose a unified moments-based framework for general performance analysis of channel-state-information (CSI) assisted amplify-and-forward (AF) relaying systems. The framework is applicable to both one-way and two-way relaying over arbitrary Nakagami-m fading channels, and it includes previously reported results as special cases. Specifically, the mathematical framework is firstly developed under the umbrella of the weighted harmonic mean of two Gamma-distributed variables in conjunction with the theory of Padé approximants. Then, general expressions for the received signal-to-noise ratios of the users in one-way/two-way relaying systems and the corresponding moments, moment generation function, and cumulative density function are established. Subsequently, the mathematical framework is applied to analyze, compare, and gain insights into system performance of one-way and two-way relaying techniques, in terms of outage probability, average symbol error probability, and achievable data rate. All analytical results are corroborated by simulation results as well as previously reported results whenever available, and they are shown to be efficient tools to evaluate and compare system performance of one-way and two-way relaying.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 8 )

Date of Publication:

September 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.