Cart (Loading....) | Create Account
Close category search window
 

Gain and loss mechanisms for neutral species in low pressure fluorocarbon plasmas by infrared spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nelson, Caleb T. ; Department of Electrical Engineering, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083 ; Overzet, Lawrence J. ; Goeckner, M.J.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4746411 

This article examines the chemical reaction pathways of stable neutral species in fluorocarbon plasmas. Octafluorocyclobutane (c-C4F8) inductively coupled plasma discharges were found to primarily produce stable and metastable products downstream from the discharge, including c-C4F8, C2F4, C2F6, CF4, C3F8, C4F10, C3F6, and CF2. A novel analysis technique allows the estimation of gain and loss rates for neutral species in the steady state as functions of residence time, pressure, and discharge power. The gain and loss rates show that CF4, C2F6, C3F8, and C4F10 share related gain mechanisms, speculated to occur at the surface. Further analysis confirms that CF2 is predominantly produced at the chamber walls through electron impact dissociation of C2F4 and lost through gas-phase addition reactions to form C2F4. Additionally, time-resolved FTIR spectra provide a second-order rate coefficient of 1.8 × 10-14 cm3/s for the gas-phase addition of CF2 to form C2F4. Finally, C2F4, which is much more abundant than CF2 in the discharge, is shown to be dominantly produced through electron impact dissociation of c-C4F8 and lost through either surface or gas-phase addition reactions.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:30 ,  Issue: 5 )

Date of Publication:

Sep 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.