By Topic

Implementing a weighted least squares procedure in training a neural network to solve the short-term load forecasting problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Choueiki, M.H. ; Public Utilities Commission of Ohio, Columbus, OH, USA ; Mount-Campbell, C.A. ; Ahalt, S.C.

The use of a weighted least squares procedure when training a neural network to solve the short-term load forecasting (STLF) problem is investigated. Our results indicate that a neural network that implements the weighted least squares procedure outperforms a neural network that implements the least squares procedure during the on-peak period for the two performance criteria specified; MAE% and COST, during the entire period for the COST criterion. It is therefore, recommended that the weighted least squares procedure be further studied by electric utilities which use neural networks to forecast their short-term load, and experience large variabilities in their hourly marginal energy costs during a 24-hour period

Published in:

Power Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )