By Topic

Global routing based on Steiner min-max trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Chiang ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; M. Sarrafzadeh ; C. K. Wong

Global routing of multiterminal nets is studied. A novel global router is proposed; each step consists of finding a tree, called a Steiner min-max tree, that is Steiner tree with maximum-weight edge minimized (real vertices represent channels containing terminals of a net, Steiner vertices represent intermediate channels, and weights correspond to densities). An O (min{e loglog e, n2}) time algorithm is proposed for obtaining a Steiner min-max tree in a weighted graph with e edges and n vertices. (This result should be contrasted with the NP-completeness of the traditional minimum-length Steiner tree problem). Experimental results on difficult examples, on randomly generated data, on master slice chips, and on benchmark examples from the Physical Design Workshop are included

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:9 ,  Issue: 12 )