By Topic

Advanced Four-Pair Architecture With Input Current Balance Function for Power Over Ethernet (PoE) System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jiande Wu ; Coll. of Electr. Eng., Zhejiang Univ., Hangzhou, China ; Haimeng Wu ; Chushan Li ; Wuhua Li
more authors

In the typical Power over Ethernet (PoE) system, the conventional powered device (PD) with two-pair architecture can only provide power below 20 W to the distant loads, which greatly restricts its applications in many areas. An advanced type of four-pair architecture with an input current balance function for the PoE system is proposed in this paper to not only improve the power level, but also achieve the high conversion efficiency. The steady-state model of the four-pair architecture is built to explore the existing imbalance problem, which is mainly caused by the structure and impedance inconsistency. The proposed four-pair architecture consists of two main converter modules operated in parallel. An input current balance scheme is adopted to reduce the difference of both primary currents, which can increase the transmission power and improve the current sharing performance. Furthermore, the small-signal model of the paralleled converters with an input current balance control strategy is constructed to give a design guideline for the control loop. Finally, a 50-W prototype is built and tested to verify the effectiveness of the presented architecture and control strategy.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 5 )