By Topic

Automated Detection of Arbitrarily Shaped Buildings in Complex Environments From Monocular VHR Optical Satellite Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali Ozgun Ok ; Department of Civil Engineering, Mersin University, Mersin, Turkey ; Caglar Senaras ; Baris Yuksel

This paper introduces a new approach for the automated detection of buildings from monocular very high resolution (VHR) optical satellite images. First, we investigate the shadow evidence to focus on building regions. To do that, we propose a new fuzzy landscape generation approach to model the directional spatial relationship between buildings and their shadows. Once all landscapes are collected, a pruning process is developed to eliminate the landscapes that may occur due to non-building objects. The final building regions are detected by GrabCut partitioning approach. In this paper, the input requirements of the GrabCut partitioning are automatically extracted from the previously determined shadow and landscape regions, so that the approach gained an efficient fully automated behavior for the detection of buildings. Extensive experiments performed on 20 test sites selected from a set of QuickBird and Geoeye-1 VHR images showed that the proposed approach accurately detects buildings with arbitrary shapes and sizes in complex environments. The tests also revealed that even under challenging environmental and illumination conditions, reasonable building detection performances could be achieved by the proposed approach.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 3 )