Cart (Loading....) | Create Account
Close category search window
 

A Discrete-Time Model for Uncompensated Single-Channel Fiber-Optical Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Beygi, L. ; Chalmers Univ. of Technol., Gothenburg, Sweden ; Agrell, E. ; Johannisson, P. ; Karlsson, M.
more authors

An analytical discrete-time model is introduced for single-wavelength polarization multiplexed nonlinear fiber-optical channels based on the symmetrized split-step Fourier method (SSFM). According to this model, for high enough symbol rates, a fiber-optic link can be described as a linear dispersive channel with additive white Gaussian noise (AWGN) and a complex scaling. The variance of this AWGN noise and the attenuation are computed analytically as a function of input power and channel parameters. The results illustrate a cubic growth of the noise variance with input power. Moreover, the cross effect between the two polarizations and the interaction of amplifier noise and the transmitted signal due to the nonlinear Kerr effect are described. In particular, it is found that the channel noise variance in one polarization is affected twice as much by the transmitted power in that polarization than by the transmitted power in the orthogonal polarization. The effect of pulse shaping is also investigated through numerical simulations. Finally, it is shown that the analytical performance results based on the new model are in close agreement with numerical results obtained using the SSFM for a symbol rate of 28 Gbaud and above.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 11 )

Date of Publication:

November 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.