By Topic

Scalable Diversified Ranking on Large Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Hua Li ; Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Hong Kong, China ; Yu, J.X.

Enhancing diversity in ranking on graphs has been identified as an important retrieval and mining task. Nevertheless, many existing diversified ranking algorithms either cannot be scalable to large graphs due to the time or memory requirements, or lack an intuitive and reasonable diversified ranking measure. In this paper, we propose a new diversified ranking measure on large graphs, which captures both relevance and diversity, and formulate the diversified ranking problem as a submodular set function maximization problem. Based on the submodularity of the proposed measure, we develop an efficient greedy algorithm with linear time and space complexity w.r.t. the size of the graph to achieve near-optimal diversified ranking. In addition, we present a generalized diversified ranking measure and give a near-optimal randomized greedy algorithm with linear time and space complexity for optimizing it. We evaluate the proposed methods through extensive experiments on five real data sets. The experimental results demonstrate the effectiveness and efficiency of the proposed algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 9 )