By Topic

The effect of mesh design in cerebral aneurysm hemodynamics for developing flow controllable stent: Computational fluid dynamics study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kojima, M. ; Dept. of Micro-Nano Syst. Eng., Nagoya Univ., Nagoya, Japan ; Tercero, C.R. ; Fukuda, T. ; Irie, K.
more authors

Computer based simulation is important for clarifying the hemodynamics in brain aneurysm. Specifically, for endovascular treatments, the effect of indwelling intravascular devices on blood stream needs to be considered. Most recent technology for cerebral aneurysm treatment is related with the use of flow diverters to reduce the amount of flow entering to the aneurysms. In this research, we present a new method for design of flow diverters and fitting them to patient specific vasculature models. This methodology enables to change porosity of the flow diverters as well as their location in the blood vessel. One coiling assist stent and two flow diverters were compared to estimate the effect of flow alteration in aneurysm for treatment of a cerebral aneurysm. From the numerical result, we can conclude that pore density and size of mesh affect the hemodynamics in aneurysm and high density and small size of pore produce reduction effect of pressure and wall shear stress on an aneurysm.

Published in:

Complex Medical Engineering (CME), 2012 ICME International Conference on

Date of Conference:

1-4 July 2012