By Topic

Electromagnetic energy harvesting from train induced railway track vibrations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, J.J. ; Dept. of Mech. Eng., State Univ. of New York at Stony Brook, Stony Brook, NY, USA ; Penamalli, G.P. ; Lei Zuo

Anelectromagnetic energy harvester is designed to harness the vibrational power from railroad track deflections due to passing trains. Whereas typical existing vibration energy harvester technologies are built for low power applications of milliwatts range, the proposed harvester will be designed for higher power applications for major track-side equipment such as warning signals, switches, and health monitoring sensors, which typically require a power supply of 10 Watts or more. To achieve this goal, we implement a new patent pending motion conversion mechanism which converts irregular pulse-like bidirectional linear vibration into regulated unidirectional rotational motion. Features of the motion mechanism include bidirectional to unidirectional conversion and flywheel speed regulation, with advantages of improved reliability, efficiency, and quality of output power. It also allows production of DC power directly from bidirectional vibration without electronic diodes. Preliminary harvester prototype testing results illustrate the features and benefits of the proposed motion mechanism, showing reduction of continual system loading, regulation of generator speed, and capability for continuous DC power generation.

Published in:

Mechatronics and Embedded Systems and Applications (MESA), 2012 IEEE/ASME International Conference on

Date of Conference:

8-10 July 2012