By Topic

Polynomial Smoothing of Time Series With Additive Step Discontinuities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ivan W. Selesnick ; Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, USA ; Stephen Arnold ; Venkata R. Dantham

This paper addresses the problem of estimating simultaneously a local polynomial signal and an approximately piecewise constant signal from a noisy additive mixture. The approach developed in this paper synthesizes the total variation filter and least-square polynomial signal smoothing into a unified problem formulation. The method is based on formulating an l1-norm regularized inverse problem. A computationally efficient algorithm, based on variable splitting and the alternating direction method of multipliers (ADMM), is presented. Algorithms are derived for both unconstrained and constrained formulations. The method is illustrated on experimental data involving the detection of nano-particles with applications to real-time virus detection using a whispering-gallery mode detector.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 12 )