Cart (Loading....) | Create Account
Close category search window
 

Fixed-Point Analysis and Parameter Selections of MSR-CORDIC With Applications to FFT Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang Yoon Park ; Inst. for Infocomm Res., Agency for Sci., Technol., & Res., A*STAR, Singapore, Singapore ; Ya Jun Yu

Mixed-scaling-rotation (MSR) coordinate rotation digital computer (CORDIC) is an attractive approach to synthesizing complex rotators. This paper presents the fixed-point error analysis and parameter selections of MSR-CORDIC with applications to the fast Fourier transform (FFT). First, the fixed-point mean squared error of the MSR-CORDIC is analyzed by considering both the angle approximation error and signal round-off error incurred in the finite precision arithmetic. The signal to quantization noise ratio (SQNR) of the output of the FFT synthesized using MSR-CORDIC is thereafter estimated. Based on these analyses, two different parameter selection algorithms of MSR-CORDIC are proposed for general and dedicated MSR-CORDIC structures. The proposed algorithms minimize the number of adders and word-length when the SQNR of the FFT output is constrained. Design examples show that the FFT designed by the proposed method exhibits a lower hardware complexity than existing methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.