Cart (Loading....) | Create Account
Close category search window
 

Negative Bias Temperature Instability for Sputtering Modification in a TiN Diffusion Barrier of p+ Polysilicon Gate Stack in 50-nm DRAM Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Chia-Ming Yang ; Dept. of Electron. Eng., Chang Gung Univ., Taoyuan, Taiwan ; Chung Yuan Lee ; Yi-Chun Lin ; Wei-Yao Wang
more authors

Negative bias temperature instability (NBTI) in plasma-nitrided oxide affected by the nitrogen incorporation of a TiN diffusion barrier layer of gate stack is first proposed. In the standard 50-nm DRAM technology, three different groups including high, medium, and low N2 flow were deposited by sputtering to investigate in this paper. The high N2 flow group was with higher drive current and higher transconductance, but worse NBTI performance in pMOSFETs than that of the low N2 flow group. Boron (B) concentration at the bottom of p+ polycrystalline silicon (poly-Si) for the high N2 flow group is 5.4% higher than that for the low N2 flow group, which is verified by the secondary ion mass spectroscopy depth profile. A vertical electric field across gate nitrided oxide enhanced by high B concentration in the interface of p+ poly-Si/nitrided oxide resulted in the degradation of NBTI and time-dependent dielectric breakdown of the high N2 flow group. However, process optimization still needs to be studied between device performance and reliability of pMOSFETs in future generation.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:13 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.