Cart (Loading....) | Create Account
Close category search window
 

Hardware Trojan Detection by Multiple-Parameter Side-Channel Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Narasimhan, S. ; Dept. of Electr. Eng. & Comput. Sci., Case Western Reserve Univ., Cleveland, OH, USA ; Dongdong Du ; Chakraborty, R.S. ; Paul, S.
more authors

Hardware Trojan attack in the form of malicious modification of a design has emerged as a major security threat. Sidechannel analysis has been investigated as an alternative to conventional logic testing to detect the presence of hardware Trojans. However, these techniques suffer from decreased sensitivity toward small Trojans, especially because of the large process variations present in modern nanometer technologies. In this paper, we propose a novel noninvasive, multiple-parameter side-channel analysisbased Trojan detection approach. We use the intrinsic relationship between dynamic current and maximum operating frequency of a circuit to isolate the effect of a Trojan circuit from process noise. We propose a vector generation approach and several design/test techniques to improve the detection sensitivity. Simulation results with two large circuits, a 32-bit integer execution unit (IEU) and a 128-bit advanced encryption standard (AES) cipher, show a detection resolution of 1.12 percent amidst ±20 percent parameter variations. The approach is also validated with experimental results. Finally, the use of a combined side-channel analysis and logic testing approach is shown to provide high overall detection coverage for hardware Trojan circuits of varying types and sizes.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 11 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.