Cart (Loading....) | Create Account
Close category search window
 

A Multi-agent Reinforcement Learning Model for Service Composition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongbing Wang ; Sch. of Comput. Sci. & Eng., Southeast Univ., Nanjing, China ; Xiaojun Wang ; Xuan Zhou

This paper describes a multi-agent reinforcement learning model for the optimization of Web service composition. Based on the model, we propose a multiagent Q-learning algorithm, where each agent would benefit from the advice of other agents in team. In contrast to single-agent reinforcement learning, our algorithm can speed up convergence to optimal policy. In addition, it allows composite service to dynamically adjust itself to fit the varying environment, where the properties of the component services continue changing. Our experiments demonstrate the efficiency of our algorithm.

Published in:

Services Computing (SCC), 2012 IEEE Ninth International Conference on

Date of Conference:

24-29 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.