By Topic

An improved quantum genetic algorithm with mutation and its application to 0-1 knapsack problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rui Wang ; Oxbridge Coll., Kunming Univ. of Sci. & Technol., Kunming, China ; Ning Guo ; Fenghong Xiang ; Jianlin Mao

An improved quantum genetic algorithm (IQGA) is proposed in this paper, which codes the chromosome with probability amplitudes represented by sine and cosine functions, and uses an adaptive strategy of the rotation angle to update the population. Then the mutation operation is considered in this improved quantum genetic algorithm (MIQGA). Rapid convergence and good global search capability characterize the performance of MIQGA. While testing, a variance function is introduced to estimate the stability of the algorithm. When solving 0–1 knapsack problem,greedy repair function is used to repair unfeasible solutions. Experimental results show MIQGA has better comprehensive performance than traditional genetic algorithm (GA), standard quantum genetic algorithm (QGA) and IQGA, especially the superiority in terms of optimization quality and population diversity.

Published in:

Measurement, Information and Control (MIC), 2012 International Conference on  (Volume:1 )

Date of Conference:

18-20 May 2012