By Topic

A human computer interface drived rehabilitation system for upper limb motion recovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zheng Tao ; The University of Hong Kong, Pokfuam, Hong Kong ; Chan Kit Wah ; Hu Yong

Rehabilitation for recovering the nerve motor system of patients with neuromuscular damage, such as those due to spinal cord injury and spasm, has been based on extremely labour intensive physiotherapy procedures. A potential solution for helping patients to expedite their recovery from neurological disorders and improve their ability in performing activities of daily living would be by using mechatronic-assistive devices that can be controlled by the patients themselves. The inclusion of modern input devices such as Head Mouse or brain-computer interface technology with neurological stimulation to help neural modulation has been advocated by others in the related research community. This paper introduces a power-assisted exoskeleton prototype system for producing elbow flexion-extension motion by using a Head Mouse as an input of control commands by the patient. Experiments were conducted to evaluate the effectiveness (Position, Velocity, Acceleration, and Torque) of the exoskeleton. Results demonstrate that the device would be a useful rehabilitation tool for patients with neuromuscular disorder.

Published in:

2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings

Date of Conference:

2-4 July 2012