By Topic

Video Object Tracking in the Compressed Domain Using Spatio-Temporal Markov Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sayed Hossein Khatoonabadi ; School of Engineering Science, Simon Fraser University, Burnaby, Canada ; Ivan V. Bajic

Despite the recent progress in both pixel-domain and compressed-domain video object tracking, the need for a tracking framework with both reasonable accuracy and reasonable complexity still exists. This paper presents a method for tracking moving objects in H.264/AVC-compressed video sequences using a spatio-temporal Markov random field (ST-MRF) model. An ST-MRF model naturally integrates the spatial and temporal aspects of the object's motion. Built upon such a model, the proposed method works in the compressed domain and uses only the motion vectors (MVs) and block coding modes from the compressed bitstream to perform tracking. First, the MVs are preprocessed through intracoded block motion approximation and global motion compensation. At each frame, the decision of whether a particular block belongs to the object being tracked is made with the help of the ST-MRF model, which is updated from frame to frame in order to follow the changes in the object's motion. The proposed method is tested on a number of standard sequences, and the results demonstrate its advantages over some of the recent state-of-the-art methods.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 1 )