Cart (Loading....) | Create Account
Close category search window

Efficient Image Classification via Multiple Rank Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chenping Hou ; Dept. of Math. & Syst. Sci., Nat. Univ. of Defense Technol., Changsha, China ; Feiping Nie ; Dongyun Yi ; Yi Wu

The problem of image classification has aroused considerable research interest in the field of image processing. Traditional methods often convert an image to a vector and then use a vector-based classifier. In this paper, a novel multiple rank regression model (MRR) for matrix data classification is proposed. Unlike traditional vector-based methods, we employ multiple-rank left projecting vectors and right projecting vectors to regress each matrix data set to its label for each category. The convergence behavior, initialization, computational complexity, and parameter determination are also analyzed. Compared with vector-based regression methods, MRR achieves higher accuracy and has lower computational complexity. Compared with traditional supervised tensor-based methods, MRR performs better for matrix data classification. Promising experimental results on face, object, and hand-written digit image classification tasks are provided to show the effectiveness of our method.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.