By Topic

Calibration and Validation of the InfraRed Atmospheric Sounder Onboard the FY3B Satellite

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chengli Qi ; Nat. Satellite Meteorol. Center, China Meteorol. Adm., Beijing, China ; Yong Chen ; Hui Liu ; Chunqiang Wu
more authors

InfraRed Atmospheric Sounder (IRAS) instruments were successfully launched onboard the FengYun-3A (FY3A) and FengYun-3B (FY3B) satellites on May 27, 2008, and November 5, 2010, respectively. They aim at providing multichannel radiances within the spectral range of visible to infrared (IR) wavelengths for many environmental applications, including data assimilation and retrievals of global atmospheric temperature and humidity profiles. However, the velocity of the filter wheel of the first IRAS onboard FY3A is unstable and, therefore, induced a discontinuity in the measurement. The IRAS onboard FY3B works well in normal and stable operational mode since its launch without any anomaly. A variety of postlaunch calibration/validation tasks are conducted using on-orbit data during a period of three months. This paper presents on-orbit verification of IRAS instrument performance, including long-term trends of the space and warm calibration counts and noise equivalent delta radiance. The Earth scenes observed simultaneously by IRAS and Meteorological Operational Satellite Programme (METOP)/Infrared Atmospheric Sounding Interferometer were obtained and compared to demonstrate a close similarity between the two measurements. Furthermore, the IR channel observations from FY3B/IRAS are compared with those from National Oceanic and Atmospheric Administration-19/High Resolution Infrared Radiation Sounder (HIRS) equivalent channels and simulations from a radiative transfer model. The results show that some of IRAS IR channels perform very well, particularly for channels 1-10, 15, 19, and 20, compared to those of HIRS. Several channels, such as 13, 16, and 18, however, display some large biases. The causes of these increased biases are still under investigation.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 12 )