By Topic

Image-Domain Estimation of Wall Parameters for Autofocusing of Through-the-Wall SAR Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tian Jin ; Sch. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China ; Bo Chen ; Zhimin Zhou

Estimation of the basic parameters, wall thickness and dielectric constant, is important in through-the-wall radar imaging. Ambiguities in wall characteristics will degrade the image focusing quality of synthetic-aperture radar. In order to obtain a quick and precise estimation of wall parameters, an equivalent propagation model of an electromagnetic wave in the air-wall-air medium is first developed in this paper. According to the developed propagation model, two filter-based approaches, denoted respectively as the echo-domain-filter-based method and the image-domain-filter-based method, are proposed to estimate wall thickness and dielectric constant by adjusting the two corresponding parameters of the echo-domain filter or the image-domain filter to obtain the best focusing quality of behind-the-wall targets. The processing schemes of the two methods show that the image-domain-filter-based method is more efficient because it does not involve imaging processing in each adjustment. Moreover, the image-domain-filter-based method is accelerated by reducing the dimension of searching space to better the computational efficiency further. Simulation results show that the proposed accelerating image-domain-filter-based method can provide quick and precise estimation of wall parameters.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 3 )