By Topic

Stack memory design for a low-cost instruction folding Java processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zi-Gang Lin ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Han-Wen Kuo ; Zi-Jing Guo ; Chun-Jen Tsai

In this paper, we propose the design of the stack memory for a low-cost Java processor that explores instruction-level parallelism. The Java virtual machine (JVM) is a stack machine where the instruction execution pipeline uses a stack to store intermediate computation results and local variables. High performance Java processors often use a large stack cache to enable parallel accesses to operands and local variables to achieve instruction-level parallelism. We propose a low-cost alternative of stack memory design that allows the Java processor to access the critical stack operands and local variables concurrently. The stack memory is constructed using seven registers and two blocks of dual-port on-chip SRAM; and is optimized for the Java instruction set architecture. When coupled with a low-cost two-way instruction folding pipeline, micro-benchmark results show that the proposed architecture can achieve up to 45.4% 2-fold instruction folding rate.

Published in:

Circuits and Systems (ISCAS), 2012 IEEE International Symposium on

Date of Conference:

20-23 May 2012