By Topic

The detection bound of the probability of error in compressed sensing using Bayesian approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiuwen Cao ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Zhiping Lin

In this paper, we consider the theoretical bound of the probability of error in compressed sensing (CS) with the Bayesian approach. In the detection problem, the signal is sparse and is reconstructed from a compressed measurement vector. Utilizing the oracle estimator in CS, we provide a theoretical bound of the probability of error when the noise in CS is white Gaussian noise (WGN). We show that without any additional information in CS, the probability of error obtained using the signal reconstructed by four recovery algorithms: the basis pursuit denoising (BPDN) algorithm, the Dantzig selector, the orthogonal matching pursuit (OMP) method and the compressive sampling matching pursuit (CoSaMP) algorithm is always larger than the derived theoretical bound. Simulation results demonstrate the effectiveness of our result.

Published in:

Circuits and Systems (ISCAS), 2012 IEEE International Symposium on

Date of Conference:

20-23 May 2012