By Topic

A new method for robust beamforming using iterative second-order cone programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. Liao ; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong ; K. M. Tsui ; S. C. Chan

This paper addresses the problem of beamforming for antenna arrays in the presence of mismatches between the true and nominal steering vectors. A new method for robust beamforming is proposed by minimizing the array output power while controlling the array mainlobe response. Due to the presence of the non-convex response constraints, a new approach based on iteratively linearizing the non-convex constraints is proposed to reformulate the non-convex problem to a series of second-order cone programming (SOCP) subproblems, each of which can be optimally solved by well-established convex optimization techniques. Simulation results show that the proposed method offers better performance than conventional methods tested.

Published in:

2012 IEEE International Symposium on Circuits and Systems

Date of Conference:

20-23 May 2012