By Topic

A low-voltage positive buck-boost converter using average-current-controlled techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bo-Han Hwang ; Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan ; Bin-Nan Sheen ; Jiann-Jong Chen ; Yuh-Shyan Hwang
more authors

A low-voltage positive buck-boost converter using average-current-controlled techniques is proposed in this paper. The benefit of the average-current-controlled circuit is that it does not need to use slope compensation, furthermore, it can reduce some power management problems such as cost, design complexity, size, and EMI. The advantages of the low-voltage operational amplifier are that it has lower power dynamic consumption and also can operate at low supply voltage. The proposed low-voltage positive buck-boost converter using the active-current-sensing circuit and average-current-controlled circuit techniques can work stably without slope compensation even when the duty cycle is higher than 50%. The proposed design circuit has been fabricated with TSMC 0.35μm CMOS 2P4M processes, the total chip area is 2.46 × 2.47mm2. When the supply voltage is 1.5V, the output voltage range is between 0.8V~3.3V.

Published in:

Circuits and Systems (ISCAS), 2012 IEEE International Symposium on

Date of Conference:

20-23 May 2012