By Topic

Nonlinear dynamics and limit cycle bifurcation of a fractional-order three-node recurrent neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao, Min ; School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Jiangsu 210017, China ; Wei Xing Zheng

In this paper, we introduce the fractional order into a three-node recurrent neural network model, and then consider the effect of the order on the system dynamics for the neural network based on a fractional-order differential equation. By applying the existing theorems on the stability of commensurate fractional-order systems, we investigate the linear stability and Hopf-type bifurcation for the fractional-order neural network model. Our analysis shows that the equilibrium point, which is unstable in the classic integer-order model, can become asymptotically stable in our fractional-order model, which is also confirmed by numerical simulations. Moreover, we also present simulation results of limit cycles produced by the fractional-order neural network model. It is shown that the amplitude of limit cycles increases with the order, while the frequency of limit cycles has robustness against the change in the order due to its small variation.

Published in:

Circuits and Systems (ISCAS), 2012 IEEE International Symposium on

Date of Conference:

20-23 May 2012