By Topic

MapReduce Framework Optimization via Performance Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lijie Xu ; Inst. of Software, Beijing, China

MapReduce framework has become the state-of-the-art paradigm for large-scale data processing. In our ongoing work, we attempt to solve the three interrelated problems: how to build an accurate MapReduce performance model, how to use it to automatically detect and optimize slow-running MapReduce jobs, and how to use it to help scheduler arrange job execution sequence. Currently, we mainly study the job execution time model and its training method. We also present several policies to optimize the job configuration and scheduler.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012