By Topic

An On-Demand Fast Parallel Pseudo Random Number Generator with Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banerjee, D.S. ; Int. Inst. of Inf. Technol., Hyderabad, India ; Bahl, A.K. ; Kothapalli, K.

The use of manycore architectures and accelerators, such as GPUs, with good programmability has allowed them to be deployed for vital computational work. The ability to use randomness in computation is known to help in several situations. For such computations to be made possible on a general purpose computer, a source of randomness, or in general a pseudo random generator (PRNG), is essential. However, most of the PRNGs currently available on GPUs suffer from some basic drawbacks that we highlight in this paper. It is of high interest therefore to develop a parallel, quality PRNG that also works in an on demand model. In this paper we investigate a CPU+GPU hybrid technique to create an efficient PRNG. The basic technique we apply is that of random walks on expander graphs. Unlike existing generators available in the GPU programming environment, our generator can produce random numbers on demand as opposed to a onetime generation. Our approach produces 0.07 GNumbers per second. The quality of our generator is tested with industry standard tests. We also demonstrate two applications of our PRNG. We apply our PRNG to design a list ranking algorithm which demonstrates the on-demand nature of the algorithm and a Monte Carlo simulation which shows the high quality of our generator.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012