By Topic

Automatic Refinement of Parallel Applications Structure Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Juan Gonzalez ; Barcelona Supercomput. Center, Univ. Politec. de Catalunya - Barcelona Tech, Barcelona, Spain ; Kevin Huck ; Judit Gimenez ; Jesus Labarta

Analyzing parallel programs has become increasingly difficult due to the immense amount of information collected on large systems. In this scenario, cluster analysis has been proved to be a useful technique to reduce the amount of data to analyze. A good example is the use of the density-based cluster algorithm DBSCAN to identify similar single program multiple data (SPMD) computing phases in message-passing applications. This structure detection simplifies the analyst work as the whole information available is reduced to a small set of clusters. However, DBSCAN presents two major problems: it is very sensitive to its parametrization and is not capable of correctly detect clusters when the data set has different densities across the data space. In this paper, we introduce the Aggregative Cluster Refinement, an iterative algorithm that produces more accurate structure detections of SPMD phases than DBSCAN. In addition, it is able to detect clusters with different densities.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012