Cart (Loading....) | Create Account
Close category search window
 

Automated Workload Characterization in Cloud-based Transactional Data Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ciciani, B. ; Sapienza Rome Univ., Rome, Italy ; Didona, D. ; Di Sanzo, P. ; Palmieri, R.
more authors

Cloud computing represents a cost-effective paradigm to deploy a wide class of large-scale distributed applications, for which the pay-per-use model combined with automatic resource provisioning promise to reduce the cost of dependability and scalability. However, a key challenge to be addressed to materialize the advantages promised by Cloud computing is the design of effective auto-scaling and self-tuning mechanisms capable of ensuring pre-determined QoS levels at minimum cost in face of changing workload conditions. This is one of the keys goals that are being pursued by the Cloud-TM project, a recent EU project that is developing a novel, self-optimizing transactional data platform for the cloud. In this paper we present the key design choices underlying the development of Cloud-TM's Workload Analyzer (WA), a crucial component of the Cloud-TM platform that is change of three key functionalities: aggregating, filtering and correlating the streams of statistical data gathered from the various nodes of the Cloud-TM platform, building detailed workload profiles of applications deployed on the Cloud-TM platform, characterizing their present and future demands in terms of both logical (i.e. data) and physical (e.g. hardware-related) resources, triggering alerts in presence of violations (or risks of future violations) of pre-determined SLAs.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.