By Topic

A Novel Approach for Regularized Signal Deconvolution Based on Hybrid Swarm Intelligence: Application to Neutron Radiography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saadi, S. ; Dept. of Electron., Univ. Ziane Achour, Djelfa, Algeria ; Guessoum, A. ; Bettayeb, M.

In this work, we introduce a new approach for the signal deconvolution problem, which is useful for the enhancement of neutron radiography projections. We attempt to restore original signals and get rid of noise present during acquisition or processing, due to gamma radiations or randomly distributed neutron flux. Signal deconvolution is an ill-posed inverse problem, so regularization techniques are used to smooth solutions by imposing constraints in the objective function. Various popular algorithms have been developed to solve such problem. This paper proposes a new approach to the nonlinear degraded signals restoration which is useful in many signal enhancement applications, based on a synergy of two swarm intelligence algorithms: particle swarm optimization (PSO) and bacterial foraging optimization (BFO) applied for total variation (TV) minimization, instead of the standard Tikhonov regularization method. We attempt to reconstruct or recover signals using some a priori knowledge of the degradation phenomenon. The truncated singular value decomposition and the wavelet filtering methods are also considered in this paper. A comparison between several powerful techniques is conducted.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012