By Topic

MapReduce Skyline Query Processing with a New Angular Partitioning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Chen ; Zhejiang Univ., Hangzhou, China ; Kai Hwang ; Wu, Jian

Fast skyline selection of high-quality web services is of critically importance to upgrade e-commerce and various cloud applications. In this paper, we present a new MapReduce Skyline method for scalable parallel skyline query processing. Our new angular partitioning of the data space reduces the processing time in selecting optimal skyline services. Our method shortens the Reduce time significantly due to the elimination of more redundant dominance computations. Through Hadoop experiments on large server clusters, our method scales well with the increase of both attribute dimensionality and data-space cardinality. We define a new performance metric to assess the local optimality of selected skyline services. By experimenting over 10,000 real-life web service applications over 10 performance attribute dimensions, we find that the angular-partitioned MapReduce method is 1.7 and 2.3 times faster than the dimensional and grid partitioning methods, respectively with a higher probability to reach the local optimality. These results are very encouraging to select optimal web services in real-time out of a large number of web services.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012