By Topic

The Chunk-Locality Index: An Efficient Query Method for Climate Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng Chen ; Minist. of Educ. Key Lab. for Earth Syst. Modeling, Tsinghua Univ. Beijing, Beijing, China ; Xiaomeng Huang ; Haohuan Fu ; Guangwen Yang

Geoscientists have a constant need to query into large-scale multidimensional array-based datasets. The most efficient way to accelerate queries is indexing. We focus on the climate datasets and propose a novel and efficient indexing method called the chunk-locality index. The main idea of this method is to take advantage of the spatial-temporal data similarity in climate datasets. We evaluate the performance of chunk-locality index in various chunk sizes with two practical climate datasets, and compare the performance results with the bitmap index. The comparison results show that the chunk-locality index presents better performance than the bitmap index not only in improving the efficiency of data queries but also in the index building time and the index size.

Published in:

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012