By Topic

Shaft Trajectory Analysis in a Partially Demagnetized Permanent-Magnet Synchronous Motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Urresty, J.-C. ; Dept. of Electron. Eng., Univ. Politec. de Catalunya, Terrassa, Spain ; Atashkhooei, R. ; Riba, J. ; Romeral, L.
more authors

Demagnetization faults have a negative impact on the behavior of permanent-magnet synchronous machines, thus reducing their efficiency, generating torque ripple, mechanical vibrations, and acoustic noise, among others. In this paper, the displacement of the shaft trajectory induced by demagnetization faults is studied. It is proved that such faults may increase considerably the amplitude of the rotor displacement. The direct measure of the shaft trajectory is performed by means of a noncontact self-mixing interferometric sensor. In addition, the new harmonics in the back electromotive force (EMF) and the stator current spectrum arising from the shaft displacement are analyzed by means of finite-element method (FEM) simulations and experimental tests. Since conventional finite-element electromagnetic models are unable to predict the harmonics arising from the shaft trajectory displacement, an improved finite-element model which takes into account the measured trajectory has been developed. It is shown that this improved model allows obtaining more accurate back EMF and stator current spectra than those obtained by means of conventional models. This work presents a comprehensive analysis of the effects generated by demagnetization faults, which may be useful to develop improved fault diagnosis schemes.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 8 )