By Topic

T–S Fuzzy-Model-Based Sliding-Mode Control for Surface-Mounted Permanent-Magnet Synchronous Motors Considering Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nga Thi-Thuy Vu ; Div. of Electron. & Electr. Eng., Dongguk Univ., Seoul, South Korea ; Dong-Young Yu ; Han Ho Choi ; Jin-Woo Jung

This paper presents a new sliding-mode control (SMC) scheme based on Takagi-Sugeno (T-S) fuzzy model for surface-mounted permanent-magnet synchronous motors (SPMSMs). First, a global T-S fuzzy model is given to represent the nonlinear dynamics of the SPMSM. The proposed T-S fuzzy-model-based sliding-mode controller considers motor parameter uncertainties and unknown external noises, so it is robust against motor parameter and load torque variations. Also, the linear matrix inequalities with feasible performance constraints are used to design both the sliding surface and the sliding-mode controller, and the stability of the proposed controller is analytically proven. In this paper, a simple sliding-mode observer is used to estimate load torque information. The proposed observer-based control scheme is implemented by using a Matlab/Simulink simulation tool and a prototype SPMSM drive with a TMS320F28335 DSP. Finally, simulations and experiments have been performed to justify that the proposed observer-based control strategy can guarantee a better performance (i.e., faster dynamic response, less steady-state error, more robustness, etc.) than the conventional observer-based nonfuzzy SMC scheme when there exist motor parameter uncertainties and unknown external disturbances.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 10 )