By Topic

Weight estimation from frame sequences using computational intelligence techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Labati, R.D. ; Dept. of Inf. Technol., Univ. degli Studi di Milano, Milan, Italy ; Genovese, A. ; Piuri, V. ; Scotti, F.

Soft biometric techniques can perform a fast and unobtrusive identification within a limited number of users, be used as a preliminary screening filter, or combined in order to increase the recognition accuracy of biometric systems. The weight is a soft biometric trait which offers a good compromise between distinctiveness and permanence, and is frequently used in forensic applications. However, traditional weight measurement techniques are time-consuming and have a low user acceptability. In this paper, we propose a method for a contactless, low-cost, unobtrusive, and unconstrained weight estimation from frame sequences representing a walking person. The method uses image processing techniques to extract a set of features from a pair of frame sequences captured by two cameras. Then, the features are processed using a computational intelligence approach, in order to learn the relations between the extracted characteristics and the weight of the person. We tested the proposed method using frame sequences describing eight different walking directions, and captured in uncontrolled light conditions. The obtained results show that the proposed method is feasible and can achieve a view-independent weight estimation, also without the need of computing a complex model of the body parts.

Published in:

Computational Intelligence for Measurement Systems and Applications (CIMSA), 2012 IEEE International Conference on

Date of Conference:

2-4 July 2012