By Topic

A hierarchical framework for content-based image spam filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao Mang Li ; Sch. of Inf. & Commun. Eng., Sungkyunkwan Univ., Suwon, South Korea ; Ung Mo Kim

Since 1990s, as the problem of spam has become a serious threat to email communication, the prolonged competition between spammers and anti-spam filters has begun and lasted until today. In order to filter spam based on the semantic analysis of email content, many content-based anti-spam approaches have been put forward, such as text-based filtering, image-based filtering, etc. However, the tricks played by spammers are also evolved quickly. Nowadays, it turns out that the capability of any single anti-spam approach is too limited to handle diverse real-world spam effectively. So, how to combine current techniques to construct more effective anti-spam systems has become the major focus of our research. In this paper, we propose a novel hierarchical anti-spam framework, which adopts multiple techniques including text classification, image processing and Optical Character Recognition in different layers to detect spam. We evaluate the proposed approach on several public spam corpora as well as our personal corpus, and verify the effectiveness of the proposed approach in terms of the filtering capacity and filtering performance.

Published in:

Information Science and Digital Content Technology (ICIDT), 2012 8th International Conference on  (Volume:1 )

Date of Conference:

26-28 June 2012