By Topic

Quantifying Spinning Reserve in Systems With Significant Wind Power Penetration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guodong Liu ; Min H. Kao Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, USA ; Kevin Tomsovic

The traditional unit commitment and economic dispatch approaches with deterministic spinning reserve requirements are inadequate given the intermittency and unpredictability of wind power generation. Alternative power system scheduling methods capable of aggregating the uncertainty of wind power, while maintaining reliable and economic performance, need to be investigated. In this paper, a probabilistic model of security-constrained unit commitment is proposed to minimize the cost of energy, spinning reserve and possible loss of load. A new formulation of expected energy not served considering the probability distribution of forecast errors of wind and load, as well as outage replacement rates of various generators is presented. The proposed method is solved by mixed integer linear programming. Numerical simulations on the IEEE Reliability Test System show the effectiveness of the method. The relationships of uncertainties and required spinning reserves are verified.

Published in:

IEEE Transactions on Power Systems  (Volume:27 ,  Issue: 4 )